Vagus Nerve Attenuates Hepatocyte Apoptosis upon Ischemia-Reperfusion via α7 Nicotinic Acetylcholine Receptor on Kupffer Cells in Mice.
نویسندگان
چکیده
BACKGROUND Hepatic ischemia-reperfusion (HIR) injury is a complication of liver surgery. As much as 50% of hepatocytes undergo apoptosis within the first 24 h of reperfusion. The neurotransmitters of the vagus nerve can activate α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. The function of Kupffer cells (KCs) determines HIR injury. We hypothesize that the vagus nerve could attenuate HIR-induced hepatocyte apoptosis by activating α7nAChR on KCs. METHODS Hepatic vagotomized C57BL/6J mice, KC-eliminated C57BL/6J mice, and α7nAChR mice were used for HIR. Primary KCs and hepatocytes were subjected to hypoxia/reoxygenation (HR). Liver injury, hepatocyte apoptosis, reactive oxygen species (ROS) production, and soluble CD163 were measured. RESULTS Hepatic vagotomy and α7nAChR caused higher levels of alanine transaminase and liver caspase-3 and -8 activity by HIR. Activating α7nAChR attenuated these changes in wild-type but not in the α7nAChR mice. Furthermore, activating α7nAChR diminished hepatic injury and reduced liver apoptosis by HIR in vagotomized mice. In vitro, activating α7nAChR reduced apoptosis of hepatocytes cocultured with KCs that suffered HR. Similar to the effects by catalase, activating α7nAChR on KCs reduced ROS and H2O2 by HR. The supernatant from KCs, with α7nAChR activated or catalase treated, prevented hepatocyte apoptosis by HR. Finally, KC elimination reduced HIR-induced H2O2 production in mice. Activating α7nAChR significantly attenuated soluble CD163 both in mice by HIR (serum: 240 ± 34 vs. 446 ± 72; mean ± SD; n = 8; P < 0.01) and in KCs by HR (supernatant: 4.23 ± 0.06 vs. 5.60 ± 0.18; n = 3; P < 0.01). CONCLUSIONS The vagus nerve could minimize HIR-induced liver apoptosis through activating α7nAChR on KCs possibly by preventing their excessive ROS production.
منابع مشابه
Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats
Objective(s): Paeoniflorin (PF) has anti-oxidation, anti-inflammation, anti-apoptosis, and neuroprotection pharmacological effects against ischemic injury. The aim of the present study was to investigate the neuroprotection mechanisms of PF in cerebral ischemia-reperfusion injury rats.Materials and Methods: We established an animal model of cerebral infarct by occlusion of the middle cerebral a...
متن کاملA wandering path toward prevention for acute kidney injury.
Acute kidney injury (AKI) is a common cause of hospital-related mortality; therefore, strategies to either prevent or treat this complication are of great interest. In this issue of the JCI, Inoue, Abe, and colleagues have uncovered a targetable neuroimmunomodulatory mechanism that protects mice from ischemia-reperfusion injury (IRI) and subsequent AKI. Specifically, the authors demonstrate tha...
متن کاملVagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.
The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective ...
متن کاملVagus Nerve Stimulation Attenuates Cerebral Ischemia and Reperfusion Injury via Endogenous Cholinergic Pathway in Rat
Inflammation and apoptosis play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that vagus nerve stimulation (VNS) following focal cerebral ischemia and reperfusion (I/R) may be neuroprotective by limiting infarct size. However, the underlying molecular mechanisms remain unclear. In this study, we investigated whether the protective effects of V...
متن کاملUsefulness of α7 nicotinic receptor messenger RNA levels in peripheral blood mononuclear cells as a marker for cholinergic antiinflammatory pathway activity in septic patients: results of a pilot study.
BACKGROUND Stimulation of the vagus nerve in the so-called cholinergic antiinflammatory pathway (CAP) attenuates systemic inflammation, improving survival in animal sepsis models via α7 nicotinic acetylcholine receptors on immunocompetent cells. Because the relevance of this regulatory pathway is unknown in human sepsis, this pilot study assessed whether the α7 gene expression level in septic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Anesthesiology
دوره 125 5 شماره
صفحات -
تاریخ انتشار 2016